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Abstract: In this paper, we consider the task of detecting platelets in images of diluted whole
blood taken with a lens-free microscope. Despite having several advantages over traditional
microscopes, lens-free imaging systems have the significant challenge that the resolution of the
system is typically limited by the pixel dimensions of the image sensor. As a result of this limited
resolution, detecting platelets is very difficult even by manual inspection of the images due to the
fact that platelets occupy just a few pixels of the reconstructed image. To address this challenge,
we develop an optical model of diluted whole blood to generate physically realistic simulated
holograms suitable for training machine learning models in a supervised manner. We then use
this model to train a convolutional neural network (CNN) for platelet detection and validate our
approach by developing a novel optical configuration which allows collecting both lens-free and
fluorescent microscopy images of the same field of view of diluted whole blood samples with
fluorescently labeled platelets.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Lens-free imaging (LFI) is a form of digital microscopic holography which records the diffraction
patterns (also referred to as holograms) of a specimen illuminated with coherent light (e.g., from
a laser) and then reconstructs an image of the specimen by inverting a mathematical model of
the light diffraction process. LFI has multiple advantages over conventional microscopy. First,
as the name implies, the system does not require lenses which significantly reduces the overall
system cost, complexity, and size. Second, LFI systems have larger fields of view than traditional
microscopes with equivalent magnification. Third, the system does not require any manual
focusing as the focal depth can be adjusted via software, which additionally eliminates the strict
mechanical stability requirements of lens-based systems (where the lens must be held at a precise
focal distance from the image sensor) [1–3].

These advantages have led to LFI being explored as a potential solution for various applications
in biomedical microscopy in resource-limited settings [4,5], such as semen [6] and hematological
analysis [7–12]. Likewise, in this work we are interested in exploiting these advantages of LFI
systems to develop a compact and low-cost system that is capable of measuring the concentration
of platelets in human blood. Platelets are responsible for forming blood clots to stop bleeding
in response to injury, and abnormal platelet levels can be both indicative and causative of a
wide variety of pathologies. As a result, many clinical situations require routine monitoring of
platelet counts, making them an indispensable medical tool and one of the standard analytes of a
complete blood count (CBC), the most widely ordered blood test worldwide.

However, despite the previously mentioned advantages of LFI systems and the clinical necessity
for monitoring platelet counts, a significant challenge in LFI applications is that the resolution of
LFI systems is often limited by the pixel size (a.k.a. pixel pitch) of the image sensor (here our
system is based on the system described in [13] and uses a 13 megapixel image sensor with a
1.12µm ×1.12µm pixel pitch). A platelet typically has a diameter of only 2-3 micrometers and a
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volume of only 9-12 femtoliters, making identification of platelets in reconstructed LFI images
very challenging even with close manual inspection of the image. As an example, Fig. 1 (Bottom
Middle) shows a small crop from a reconstructed image of diluted whole blood. Note that while
some platelets are visible (a few are denoted with red arrows), they are hard to identify manually
and can be easily confused with artifacts in the reconstructed image. One potential solution is to
consider digital holography techniques beyond LFI, which also allow for software focusing as
well as higher image resolution, and such techniques have been used for a variety of biomedical
applications such as assessing red blood cell morphology, quantifying cardiomyocyte activity,
and detecting malaria (see [14,15] for reviews). In order to achieve higher resolution, however,
these digital holography techniques often rely on additional optical components such as mirrors,
beam-splitters, and lenses, which can significantly increase system cost and complexity and often
results in a much smaller field of view than is possible with LFI systems.
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Fig. 1. (Top) Full size reconstructed LFI image: yellow dashed rectangle - field of view
that is overlapping with the fluorescent microscope described in §4, red dashed square - field
of view of the crop shown in the bottom row. The horizontal lines in the image that run the
full width of the image are the walls of the microfluidic channel. (Bottom Left) Parameters
of the RBC shape model and crops of real and simulated RBCs. (Bottom Middle) Small
crop of the example reconstructed LFI image (from red dashed square). Red arrows denote
example platelets and blue arrow denotes the RBC shown in the crop to the left. (Bottom
Right) Small crop from a simulated image reconstruction.

In terms of object detection methods, current state-of-the-art systems largely come from
natural image applications and are predominately based on deep neural networks (see [16–18] for
a few current, well-known examples). However, training large network models (or supervised
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learning methods in general) requires access to significant volumes of training images along
with corresponding ground-truth regarding the location of the various objects of interest. As
described above, it is often very challenging to accurately locate and identify platelets even by
manual inspection in reconstructed lens-free images due to 1) their small size relative to the
resolution of the image 2) the relatively small signal that they generate relative to the other cells
in the image (predominately red blood cells, which have roughly an order of magnitude larger
volume), and 3) the fact that there is roughly an order of magnitude fewer platelets compared to
red blood cells in a typical sample. Combined, these issues significantly limit the potential of
constructing even moderately sized training and testing datasets, which precludes the use not
only of large-scale supervised methods like neural networks but any supervised learning method
(such as training a simple classifier based on pre-defined image features) as well as making the
quantitative evaluation of any object-detection approach very challenging.
In this work, we address these challenges through two key contributions. First, we develop

an optical model which allows us to simulate synthetic holograms of diluted whole blood with
sufficient realism to train a convolutional neural network (CNN) capable of detecting platelets in
real LFI images (which by extension also enables the use of other supervised learning methods).
Additionally, we also develop a validation method for our approach by constructing a novel tandem
microscopy imaging setup which allows us to record a LFI hologram and a fluorescent image
of an overlapping field of view within a few seconds of each other. By fluorescently labeling
platelets we then compare the platelet detections from our trained neural network operating on
LFI images with detections from the corresponding fluorescent image (which is easier due to the
fluorescent labeling), using detections from the fluorescent image as a presumed ground truth.
This paper extends a preliminary conference publication [19] by adding additional description of
the optical setup and image analysis pipeline used for the verification protocol as well as testing
the method on a larger set of images.

2. Optical model

To develop our optical model of diluted whole blood, we need a means to optically model the
various cell types present in human blood: red blood cells (RBCs), platelets (PLTs), and white
blood cells (WBCs). WBCs are relatively uncommon (roughly 3 orders of magnitude lower
concentrations than RBCs), so their presence or absence in an image has little impact on detecting
PLTs. As a result, we will largely focus on modeling RBCs and PLTs.

2.1. Red blood cell model

To model the optical properties of an RBC, we use a phase-plate model which describes the
modulation of the incident light wave that is created by the RBC as a phase shift proportional to
the integration of the RBC shape along the optical axis (by common convention we’ll use the z
axis as the direction of light propagation). This model is consistent with scattering measurements
taken of RBCs which have also noted that at the wavelength of light used by our LFI system
(637nm) RBCs do not absorb light [20]. With this model, the optical modulation of the incident
wavefront is entirely determined by the RBC shape and orientation (and more specifically the
integral of the shape along the optical axis), so to model the RBC shape, we use the parametric
model for RBC shape given in [21], which takes the general form:

(x2 + y2 + z2)2 + P(x2 + y2) + Qz2 + R ≤ 0, (1)

where (P,Q,R) are coefficients determined by the minimum thickness of the RBC, hmin, the
maximal thickness of the RBC, hmax, and the diameter of the RBC, d, given as:
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Given the general shape of an RBC (see Fig. 1 (Bottom Left) for an illustration of the relevant
dimensions), we then generate RBCs at arbitrary orientations and locations in the image by
rotating and translating the coordinate system in (1) for each RBC and then integrate along the
optical axis to produce the total path length image (recall path length is proportional to phase
shift) induced by the kth RBC as:

θ̄RBCk (x, y) =
∫
I[(x̄2k + ȳ

2
k + z̄

2
k)

2 + Pk(x̄2k + ȳ
2
k) + Qk z̄2k + Rk ≤ 0]dz, (3)

where I[c] is an indicator function which takes value 1 if condition c is true and 0 otherwise,
(x̄k, ȳk, z̄k) are the rotated and translated coordinates for the kth RBC, and (Pk,Qk,Rk) are
the coefficients for RBC k with a prescribed set of shape dimensions (dk, hmax,k, hmin,k), each
independently sampled for each cell uniformly over the ranges ([7, 8.5], [2, 2.5], [0.8, 1.4])µm.

2.2. Platelet model

Since platelets are very small relative to the resolution of images we are simulating, we use a
relatively simple model in our simulations as additional details will be largely irrelevant after
image discretization. Namely, we again assume that platelets modulate the light wavefront largely
by simply shifting the phase of the wavefront (i.e., they do not significantly absorb light). As a
result, we model platelets as being a simple disk of shifted phase

θPLTj (x, y) = ψjI[x̄
2
j + ȳ

2
j ≤ r2j ], (4)

where ψj denotes a constant phase shift (which we uniformly sample from [0.25, 0.75]/(2π)
radians based on typical measurements of platelets in our reconstructed images) applied to all
pixels within platelet j, where (x̄j, ȳj) are the translated coordinates for the jth platelet, and rj is
the radius of the jth platelet, sampled uniformly over the range [0.8, 1.5]µm.

2.3. Full model

Given these individual models for both PLTs and RBCs, we then simulate the (complex valued)
optical wavefront at the image plane (on a discrete 1024 × 1024 grid of pixels with dimensions
1.12µm × 1.12µm) by combining the various phase shifts induced by all the simulated cells of
various sizes, locations, and orientations:

I(x, y) = exp

{
2πi

[
νRBC − νmedia

λ

∑
k
θ̄RBCk (x, y) +

∑
j
θPLTj (x, y)

]}
, (5)

where νRBC = 1.4 is the refractive index of an RBC at our illumination wavelength, λ = 637nm,
as measured in [20], and νmedia = 1.33 is the refractive index of the fluid media suspending the
blood cells. We sample the locations of PLTs and RBCs uniformly over the entire field-of-view,
and we sample the cell density (cells/image area) and percentage of cells that are PLTs (with
the rest being RBCs) uniformly over the ranges [0.285, 3.58] cells/kilopixels and [3%, 10%],
respectively, to correspond with the typical dilutions and biological values in our experiments.
Given the simulated wavefront at the image plane, I(x, y), we then simulate the hologram by

projecting the wavefront to the image sensor plane a distance z0 away (we sample uniformly
over [400, 1200]µm in our simulations) using the wide-angular spectrum (WAS) model for
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light propagation [1] which projects the wavefront via a convolution with a transfer function
Iz0 (x, y) = tz0 (x, y) ∗ I(x, y), with the transfer function, tz0 (x, y), defined in Fourier space as,

F
{
tz0 (x, y)

}
[kx, ky] = exp

(
iz0

√
( 2πλ )

2 − k2x − k2y
)
. (6)

Once the simulated wavefront is projected to the image sensor plane, we then produce a final
simulated hologram by taking the absolute value of the wavefront due to the physics of the image
sensor only being able to record the magnitude of the optical wavefront but not the phase. Finally,
we add a small amount of sampling noise, to produce the final simulated hologram as follows,

H(x, y) = |Iz0 (x, y)| + ε(x, y) where ε(x, y) i.i.d.∼ N(0,σ) ∀(x, y). (7)

Here we have used a Gaussian noise model for the image sensor, with standard deviations uniform
over the range [0.0125, 0.03125], but other noise models (e.g., Poisson) could also be employed
depending on the application.

3. Platelet detection

Using the previously described method for simulating LFI holograms, we trained a convolutional
neural network (CNN) to detect platelet locations from the recorded hologram. The first step in
this process is to reconstruct an image of the specimen from the simulated hologram, for which
we employ the sparse phase recovery reconstruction method developed in [22]. Figure 1 shows
example reconstructions from both a real hologram and a simulated hologram, which have strong
qualitative similarities. In addition to sensor noise added to the simulated hologram, we also add
an offset (uniformly sampled over ±3µm) to the reconstruction focal depth versus the true focal
depth used to generate the simulated hologram to account for potential errors in auto-focusing
that can occur when reconstructing real images. After reconstruction, the image is complex
valued, representing an estimate of the image wavefront at the specimen plane (all images of
reconstructions show the absolute value of the wavefront), so to train a CNN to detect platelets,
we split the real and imaginary components of the reconstruction into two input channels to the
network. The rest of the network is then a fully convolutional network, consisting of a sequence
of six convolutional layers with kernels of spatial dimension 3x3 and the number of output
channels reducing by a factor of 2 each layer ([32, 16, 8, 4, 2, 1], respectively). Rectified Linear
Unit (ReLU) non-linearities are applied entry-wise after each convolution, with the exception of
the final layer which applies a sigmoid non-linearity (see Fig. 2). The use of a fully convolutional
network was done for two reasons. First, it allows the network to be applied to an input image of
arbitrary size, and second, due to the small size of the platelets in these images we did not want
to lose any spatial information regarding their location through any operation that reduces the
image dimension (such as max-pooling or mean-pooling).
Note that the output of the network is an image with the same spatial dimension as the input,

where the magnitude of each pixel is the probability that the pixel contains a platelet. As a
result, we train the network as a pixel-wise classification problem using the cross-entropy loss
applied pixel-wise comparing to whether a given pixel contains a platelet in the simulated image.
The network weights are optimized using standard stochastic gradient descent with Nesterov
acceleration. Mini-batches of 10 simulated images with dimension 1024×1024 are generated,
and for each mini-batch 50 gradient descent steps are taken before a new mini-batch is generated.
To perform inference on unseen real images, we simply threshold the output image at a value of
0.5 (recall the sigmoid non-linearity outputs a value in the range [0, 1]) and treat each connected
component in the thresholded image as a platelet detection with no morphological filtering.
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Fig. 2. Network architecture used for platelet detection. After spliting the complex-valued
reconstruction into real and imaginary channels, the remaining network is fully convolutional
with bias terms and ReLU non-linearities following each convolution with the exception of
the final convolution which uses a sigmoid non-linearity. All kernels use a spatial dimension
of 3 × 3 with a stride of 1. The indicated dimensions correspond to the output dimension
of the representation following the convolution of that layer (e.g., the output of the Conv 1
layer is m × n × 32). Layers in blue contain trainable parameters.

4. Testing and validation

The fact that PLTs are very hard to detect even manually in LFI images presents significant
challenges not only to the training of PLT detection methods (as discussed above) but also to the
quantitative testing and validation of such methods as one often does not have access to high
quality ground truth information. To address this issue, we developed a tandem microscopy
setup which allows for both fluorescent and LFI images with a partially overlapping field of view
(FOV) to be recorded within a few seconds of each other. By fluorescently labeling the PLTs we
can then detect PLTs in the fluorescent images with fairly high confidence (as they are the only
fluorescent objects in the image), and we then compare the set of detections in the fluorescent
images with those in the LFI images.

4.1. Dual imaging setup

We developed a setup to allow simultaneous collection of LFI holograms paired with fluorescence
microscope images in order to facilitate the positive verification of platelet detections in LFI
reconstructions. The setup consists of placing the LFI optical system under an epi-fluorescence
microscope (Zeiss Axiozoom v.16) with a high numerical aperture objective (0.25 NA) and long
working distance (56 mm) allowing the LFI image sensor to sit directly beneath the microscope
objective (see Fig. 3). The LFI laser diode is suspended by thin wires directly underneath the
objective to provide illumination for the LFI image sensor while minimizing blockage of the
fluorescent lightpath. While some of the fluorescent lightpath is obstructed, due to the placement
of the diode, the blocked light largely corresponds to the low-frequency components of the
fluorescent image, resulting in minimal distortion to the fluorescent image. Further recall that
we are primarily interested in detecting the locations of the PLTs in the fluorescent images to
use as a ground truth, so we can tolerate minor distortions in the fluorescent images. With this
setup, images were collected by coordinating acquisition between the fluorescent microscope
and LFI system, with the fluorescent microscope first collecting an image of diluted blood
containing fluorescently labeled platelets followed closely by the LFI system collecting an image.
A rendering of the imaging setup is given in Fig. 3.

4.2. Sample preparation and image acquisition

The sample itself consists of EDTA anticoagulated whole human blood containing immunolabled
platelets. Immunolabeling was accomplished by incubating samples with CD41/CD61-FITC
human antibody (Miltenyi Biotec), which selectively only labels platelets. To image this label
with the fluorescent microscope we illuminated the specimen with a Zeiss HXP 200C light source
and used a Zeiss 38 HE filter cube, which consists of a 495nm dichroic, 470±20nm excitation filter,



Research Article Vol. 11, No. 4 / 1 April 2020 / Biomedical Optics Express 1814

Fluorescent 
Lightpath

LFI Illumination 
Diode

LFI Image 
Sensor

Microfluidic 
Flow Cell

1
Fig. 3. Optical setup for simultaneous LFI and fluorescent imaging. The LFI illumination
diode is suspended by wires inside the lightpath (in red) of the fluorescent microscope.

and a 525±25nm emission filter. After labeling, the blood is diluted with phosphate-buffered
saline to a final dilution of 1:200. The sample was flown through a 50µm tall (along direction of
light propagation) and 1000µmwide (vertical axis in Fig. 1) microfluidic channel placed on top of
the LFI image sensor, with a pause in sample flow during image acquisition to minimize sample
movement between the LFI and fluorescent image acquisitions. The overall sequence consisted
of the following steps: 1) flow of fresh sample into LFI/fluorescent microscope field of view 2)
sample flow was stopped, allowing sample movement to halt before acquisition 3) fluorescent
microscope acquisition 4) fluorescent illumination is shuttered 5) LFI image acquisition 6) flow
of fresh sample into field of view in preparation for another pair of acquisitions. The cycle was
repeated to collect a set of LFI/fluorescent microscope paired images for verification.

4.3. PLT detection in fluorescent images

To detect the fluorescently labeled PLTs in the fluorescent images we perform a standard image
denoising procedure based on sparse dictionary learning [23], where we first extract all 10x10
pixel patches from the image using a sliding window, normalize the patches to have zero mean
and unit Euclidean norm, and then train a sparse dictionary from the patches via the following
formulation:

min
D,A

1
2 ‖Y − DA‖

2
F + λ‖A‖1 s.t. ‖Di‖2 ≤ 1,∀i ∈ {1, . . . ,L}, (8)

whereY ∈ R100×p is amatrix of all p extracted and normalized patches,D = [D1, . . . ,DL] ∈ R
100×L

is the matrix of L dictionary atoms (we used L = 500), and A ∈ RL×p is the matrix of sparse
encodings for each patch. From the learned sparse encoding, we reconstruct the patches using
the sparse encoding approximation of the patches (i.e., DA), and finally regenerate the denoised
image by returning the patches to the appropriate locations and averaging over the overlapping
patches. Once the fluorescent images have been denoised via dictionary learning, the platelets
are easily detected via a simple thresholding. The bottom row of Fig. 4 shows an example crop
of the fluorescent image and corresponding denoised image with detections.

4.4. Aligning fluorescent and LFI images

Once PLT detection has been performed on both an LFI image and a corresponding fluorescent
image, we then align the coordinate systems between the two image modalities. Although the
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Fig. 4. Pipeline for evaluating PLT detection accuracy in LFI images. (Top Row) An LFI
image (Left: Example crop) is passed through a LFI detection method producing detections
(Middle: Example detections from our CNN detector, grayscale saturated to better visualize
platelets). (Bottom Row) A fluorescent image (Left) is denoised using the dictionary learning
approach in §4.3. After denoising the platelets are detected via simple thresholding, giving
the set of fluorescent detections (Middle). (Right Column) After PLTs have been detected in
both the LFI and fluorescent images, then the sets of detections are aligned via the procedure
described in §4.4 and the performance of the LFI detection method is measured using the
metric described in §4.5.

two image modalities have a partially overlapping FOV, the two images are taken at different
magnifications and spatial offsets relative to each other, so to register the two sets of image
coordinates we fit an affine transformation using an alternating minimization approach where we
begin with a rough estimate of the alignment transformation between the images. Then, given
the assumed alignment, we project one set of PLT detections into the coordinates of the other set
and match the two sets of detections using a linear assignment with an Euclidean distance cost to
produce correspondences. Using the new proposed assignments we then update the parameters
of the affine transformation between the coordinate systems to minimize the Euclidean error
between the proposed correspondences between the two sets of detections.

4.5. Performance metrics

To evaluate the performance of our combined model (a PLT detection CNN trained using
images from our simulator) we collected two datasets of paired LFI and fluorescent images
from two different experimental blood samples, with 39 and 99 image pairs in each dataset,
respectively. We then treat the PLT detections in the fluorescent image as a ground truth and
compute precision and recall scores along with the F-measure (the F-measure is defined as
2(precision ∗ recall)/(precision+ recall)). Due to the fact that the LFI and fluorescent images are
not collected at exactly the same time, the cells (which are suspended in a microfluidic flow-cell
channel) can move slightly between image acquisitions, so even after the coordinate set alignment
described above there is still some offset between detections in the two image modalities. As
a result, we compute the precision, recall, and F-measure statistics as a function of an allowed
detection radius, where we label a detection in the LFI image as being correct if it is within the
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detection radius of a detection in the fluorescent image. Specifically, to avoid assigning multiple
LFI detections to a single fluorescent detection (or vice versa), we solve a linear assignment
problem between the two sets of detections (NLFI LFI detections and NF fluorescent detections)
with form:

min
Λ
〈Λ,C〉 s.t. 1>Λ ≤ 1>, Λ1 ≤ 1, 0 ≤ Λi,j ≤ 1 ∀(i, j) (9)

where the cost matrix C ∈ RNLFI×NF has zero cost in matching two detections if they lie within
the detection radius of each other and a cost of one if they lie outside of that radius:

Ci,j =


0 if (xi − xj)2 + (yi − yj)2 ≤ r2d
1 otherwise

(10)

where (xi, yi) are detection coordinates for detection i in the LFI image, (xj, yj) are detection
coordinates for detection j in the fluorescent image (following coordinate alignment), and rd is
the allowed detection radius. Any detections lying outside the overlapping FOV between the two
images (after coordinate alignment) were discarded prior to linear assignment.

4.6. Baseline methods and results

To compare our method against a baseline, the fact that in our original problem we do not have
knowledge of ground truth locations again presents difficulty as we cannot compare against any
supervised approaches for object detection. As a result, we compare against several unsupervised
approaches. First, we consider an “optimal” thresholding baseline, where we study the best
performance that can be achieved via simple thresholding, even if the hyper-parameters of the
thresholding algorithm are tuned directly to maximize performance on the test data. Specifically,
we threshold the LFI image and then label a connected component in the thresholded image a
PLT if its area is within lower and upper bound limits. We then maximize the F-measure at a
detection radius of 15 pixels by performing an exhaustive grid search over the choice of the image
intensity threshold and lower/upper bounds on the connected component area. Note that this uses
full knowledge of the ground-truth to tune the thresholding hyperparameters and as a result is an
over-estimate of the performance of thresholding. Figure 5 shows that even though the optimal
thresholding method makes full use of the ground-truth in selecting hyperparameters our method
still achieves a higher F-measure across all choices of allowed detection radii. Additionally, the
optimal thresholding method is very unstable to choice of hyperparameters, and simply increasing
(Thresh +) or decreasing (Thresh -) the upper and lower limits of the connected component
area by the minimum increment in the grid search (3 pixels) significantly degrades performance.
Further, cross validating the thresholding hyperparameters by using parameters tuned from
one experiment to evaluate the other experiment results in a significant drop in F-measure
performance (Thresh-CV). In contrast our CNN, trained exclusively using our developed optical
simulator, achieves very good performance on both datasets with over 80% F-Measure score
once the detection radius is above approximately 10 pixels, roughly on the order of the alignment
error between the LFI and fluorescent coordinates due to cells drifting slightly between LFI and
fluorescent image acquisitions.

In addition to the optimal thresholding baseline, we also consider the template matching (TM)
baseline algorithm described in [11]. Here, we first convert the complex valued reconstruction
to an absolute valued image and then use platelet templates which consist of symmetric 2D-
Gaussians. We again perform an exhaustive grid search over the hyper-parameters of the TM
algorithm, including the standard deviation of the Gaussian template and the threshold used in
the non-maximal suppression. Even with choosing the optimal set of hyperparameters directly
on test data, TM achieves very poor performance with extensive false positive triggers on RBCs,
and the highest F-measure across all hyperparameter choices and allowed detection radii was less
than 0.5 (off the scale of Fig. 5).
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Fig. 5. Recall, Precision, and F-Measure values as a function of detection radius. CNN:
The convolutional neural network trained using our simulated model. Thresh-Opt: Detection
based on thresholding, where the optimal threshold hyper-parameters are tuned using the
test data. Thresh-CV: Detection based on thresholding using the optimal threshold hyper-
parameters from the other experiment (e.g., tune on Exp. 1, test on Exp. 2). Thresh +/-: The
performance after making a small increase (Thresh +) or decrease (Thresh -) to the optimal
connected component area hyperparameter.

5. Conclusions

We have presented an optical model of diluted whole blood that is sufficiently realistic to be
successful in training a CNN based object detection network. Our approach achieves good
performance on the very difficult task of detecting platelets in reconstructed LFI images, which
can be challenging even by manual inspection due to the limited resolution of LFI systems and
additionally presents significant challenges in even validating a given method. As a result, to
validate our approach we developed and constructed a novel tandem microscopy setup which
allows for close to simultaneous imaging of a fluorescent image (with fluorescently labeled
platelets) and a LFI image of an overlapping field of view.
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